6x^2+6x-4=85/2

Simple and best practice solution for 6x^2+6x-4=85/2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 6x^2+6x-4=85/2 equation:



6x^2+6x-4=85/2
We move all terms to the left:
6x^2+6x-4-(85/2)=0
We add all the numbers together, and all the variables
6x^2+6x-4-(+85/2)=0
We get rid of parentheses
6x^2+6x-4-85/2=0
We multiply all the terms by the denominator
6x^2*2+6x*2-85-4*2=0
We add all the numbers together, and all the variables
6x^2*2+6x*2-93=0
Wy multiply elements
12x^2+12x-93=0
a = 12; b = 12; c = -93;
Δ = b2-4ac
Δ = 122-4·12·(-93)
Δ = 4608
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{4608}=\sqrt{2304*2}=\sqrt{2304}*\sqrt{2}=48\sqrt{2}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-48\sqrt{2}}{2*12}=\frac{-12-48\sqrt{2}}{24} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+48\sqrt{2}}{2*12}=\frac{-12+48\sqrt{2}}{24} $

See similar equations:

| 3(x-5)-5(x-4)=0 | | 5·z=35​ | | -(-7-4x)-2x-(3x-9)=-8 | | 6g=-474 | | 6a^2+12a+15=33 | | ​12x−15=6−3x | | 9dd=3 | | j+7=4 | | 9x+6+4x=9 | | 5z=35$. | | 4x2x7=80 | | 8(j­4)=2(4j­16) | | H(x)=4-×÷6 | | -11(8)=66y | | 4a^2+12a-5=2 | | 8t=(42+5t) | | 3/4a=24/16 | | 15-8x=-59 | | −18=  9−3x | | 5y+8=50 | | 3x-6=3x+4-2 | | 2h+21=-133 | | 112+x=161 | | 16x-5=10x+25 | | 2x^2+5x=x^2+4x+3 | | -66=8a+6 | | x^2+10x-11=-9 | | -9=3+4k | | 6+2x=-1 | | X^2+15x+5^6=0 | | √6x-24=-12 | | 3(x+4)=-x+4x+3 |

Equations solver categories